

MOSFET circuits at DC Kizito NKURIKIYEYEZU, Ph.D.

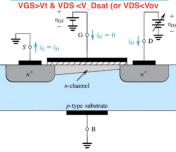
Introduction

- How does MOSFET's behave in DC circuits?
- We will neglect the effects of channel length modulation (assuming $\lambda = 0$).
- We will work in terms of overdrive voltage v_{OV} , which reduces need to distinguish between PMOS and NMOS.

Introduction

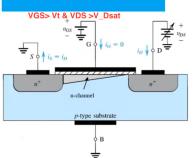
- How does MOSFET's behave in DC circuits?
- We will neglect the effects of channel length modulation (assuming $\lambda = 0$).
- We will work in terms of overdrive voltage v_{OV} , which reduces need to distinguish between PMOS and NMOS.

Introduction


- How does MOSFET's behave in DC circuits?
- We will neglect the effects of channel length modulation (assuming $\lambda = 0$).
- We will work in terms of overdrive voltage v_{OV} , which reduces need to distinguish between PMOS and NMOS.

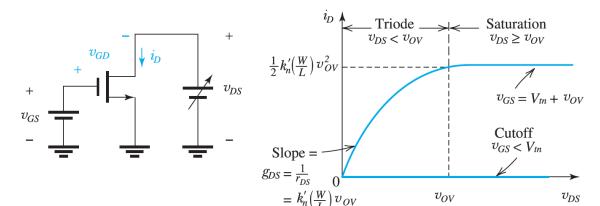
Review: Regions of Operation of a MOSFET Transistor

Cutoff VGS < Vt Drain (D) Oxide (SiO2) $(thickness = t_{-})$ Channel p-type substrate Body

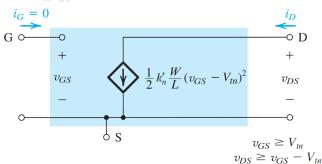


Triode

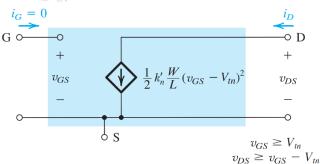
$$i_D = k_n' \left(\frac{W}{L}\right) \left(V_{OV} - \frac{1}{2} v_{DS}\right) v_{DS}$$


Saturation

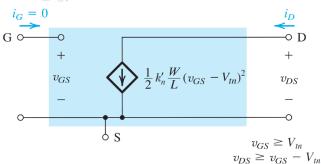
$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) v_{OV}^2$$

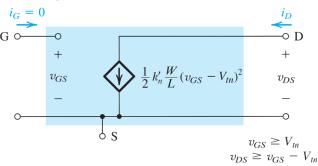

Review: Regions of Operation of an NMOS Transistor

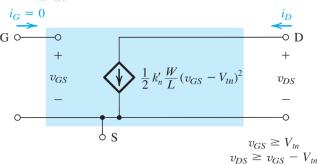
 \blacksquare $v_{GS} < V_t$ —no channel. The transistor is in the cut-off mode. $i_D = 0$

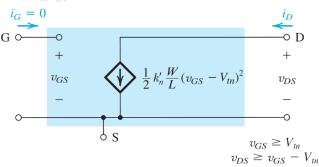


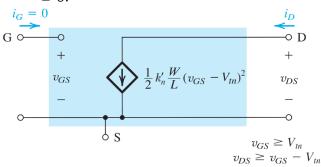
 $^{{}^{0}}$ In the triode, i_{D} is controlled by three terminals (hence the name triode), unlike in the saturation mode, where the transistor's operation is controlled by two terminals


- \blacksquare Cut-off, when $v_{GS} < V_t$
 - $I_D = 0$
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - Existence of a resistance $r_{DS} = k_n v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- 3 Saturation, when $v_{DS>v_{OV}}$

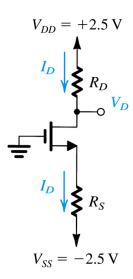

- \blacksquare Cut-off, when $v_{GS} < V_t$
 - $i_D = 0$
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - **EXECUTE:** Existence of a resistance $r_{OS} = k_0 v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- 3 Saturation, when $v_{DS>v_{OV}}$


- 1 Cut-off, when $v_{GS} < V_t$
 - $i_D = 0$
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - **Existence** of a resistance $r_{DS} = k_n v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- 3 Saturation, when $v_{DS>v_{OV}}$


- \blacksquare Cut-off, when $v_{GS} < V_t$
 - $i_D = 0$
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - **E**xistence of a resistance $r_{DS} = k_n v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- Saturation, when $v_{DS \geq v_{OV}}$


- 1 Cut-off, when $v_{GS} < V_t$
 - $i_D = 0$
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - Existence of a resistance $r_{DS} = k_D v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- Saturation, when $v_{DS>v_{OV}}$

- 1 Cut-off, when $v_{GS} < V_t$
 - $\blacksquare i_D = 0$
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - **Existence** of a resistance $r_{DS} = k_D v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- 3 Saturation, when $v_{DS>v_{OV}}$

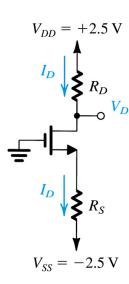

- 1 Cut-off, when $v_{GS} < V_t$
 - $i_D = 0$
 - no channel is formed
- 2 Triode, when $v_{GS} = V_t + v_{OV}$
 - **Existence** of a resistance $r_{DS} = k_D v_{OV}$ between the drain and the source
 - This model is not accurate when as the v_{DS} get close to v_{OV}
- 3 Saturation, when $v_{DS>v_{OV}}$

Example 1

Determine the values of R_D and R_S so that the transistor operates at $i_D=0.4mA$ and $V_D=+0.5V$. The NMOS transistor has $V_t=0.7V$, $\mu_nC_{ox}=100\mu A/V^2$, $L=1\mu m$, and $W=32\mu m$. Neglect the channel-length modulation effect (i.e., assume that $\lambda=0$).

Example 1—Solution

■ For a V_D voltage, we have

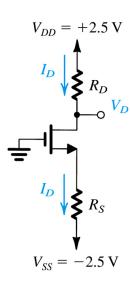

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{2.5 - 0.5}{0.4} = 5 \,\mathrm{k}\Omega$$
 (1)

- Calculating R_S is a bit more complex because we need to know the voltage at the source terminal.
 - Since $V_D = 0.5 > V_G$, the transistor is in the saturation mode. Thus,

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{OV}^2 \tag{2}$$

The overdrive voltage is thus given by

$$V_{OV} = \sqrt{\frac{I_D}{\frac{1}{2}\mu_D C_{ox} \frac{W}{I}}} = 0.5V$$
 (3)


Example 1—Solution

■ It is now possible to calculate V_{GS}

$$V_{GS} = V_t + V_{OV} = 0.7V + 0.5V = 1.2V$$
 (4)

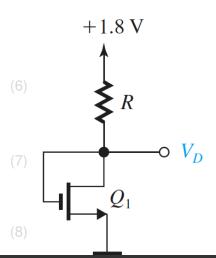
■ The source resistor is thus given by

$$R_{S} = \frac{V_{G} - V_{S} - V_{SS}}{I_{D}} = \frac{0 - 1.2 - (-2.5)}{0.4} = 3.25 \,\mathrm{k}\Omega \tag{5}$$

Example 2

Find the value of R that results in $V_D=0.7V$. The MOSFET has $V_{tn}=0.5V$, $\mu_n Cox=0.4\,\mathrm{mA}\,\mathrm{V}^{-2},~W=0.72\,\mathrm{\mu m},~L=0.18\,\mathrm{\mu m}$ and $\lambda=0$

- Saturation mode since $v_{GD} = 0 < V_{tn}$
- Thus, the drain current is given by


$$i_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_D - V_{tn})^2 = 0.032 mA$$

 \blacksquare The resistor R is given by

$$R = (1.8V - V_D)/I_D$$

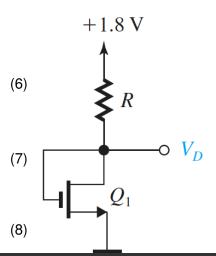
■ Since $V_D = 1.8V - I_D R = 0.7V$,

$$R = (1.8V - 0.7V)/0.032mA = 34.4 \text{k}\Omega$$

Example 2

Find the value of R that results in $V_D=0.7V$. The MOSFET has $V_{tn}=0.5V$, $\mu_n Cox=0.4\,\mathrm{mA}\,\mathrm{V}^{-2},~W=0.72\,\mathrm{\mu m},~L=0.18\,\mathrm{\mu m}$ and $\lambda=0$

- Saturation mode since $v_{GD} = 0 < V_{tn}$
- Thus, the drain current is given by


$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_D - V_{tn})^2 = 0.032 mA$$

■ The resistor *R* is given by

$$R = (1.8V - V_D)/I_D$$

■ Since $V_D = 1.8V - I_D R = 0.7V$,

$$R = (1.8V - 0.7V)/0.032mA = 34.4 \text{ k}\Omega$$

The end